ECO SENSORS, INC.
Santa Fe, NM, USA
E-mail: sales@ecosensors.com
www.eco sensors.com

Applications Note MO-101

USEFUL OZONE CONVERSION FACTORS

Standard Temperature and Pressure: $273.3 \mathrm{~K}\left(\mathrm{O}^{\circ} \mathrm{C}, 32^{\circ} \mathrm{F}\right)$ and 1013.25 mb (14.706 psi)

Metric Volume and Length

(1) $1 \mathrm{~m}^{3}=1,000$ liters 1 gallon $=4.546$ liters
(2) 1 foot $=.305$ meter $1 \mathrm{ft}^{3}=.0283 \mathrm{~m}^{3}$

Ozone in Water

(3) $1 \mathrm{~g} / \mathrm{m}^{3}=1 \mathrm{mg} / \mathrm{L}=1 \mathrm{ppm}$ ozone (by weight) in water

Ozone in Air (Low concentrations such as work place safety)

(Concentrations by Volume)

(4) $1 \mathrm{~g} \mathrm{O}_{3} / \mathrm{m}^{3}=467 \mathrm{ppm}$ by volume
(5) $\quad 1 \mathrm{ppm} \mathrm{O}_{3}$ (volume) $=2.14 \mathrm{mg} \mathrm{o}_{3} / \mathrm{m}^{3}$
(6) $.1 \mathrm{ppm} \mathrm{O}_{3}$ (volume) $=214 \mathrm{ug} / \mathrm{m}^{3} \quad$ (used more often in Europe)
(7) $1 \mathrm{ppm}=.00214 \mathrm{ug} / \mathrm{ml} \quad 1 \mathrm{ug} / \mathrm{ml}=467 \mathrm{ppm} \quad$ (used in medical ozone)
(8) $1 \mathrm{ppm}=100 \mathrm{pphm}$ (used in rubber testing)
(9) Concentration by volume, $\mathrm{v} / \mathrm{v}=\mathrm{C}\left(\mathrm{g} / \mathrm{m}^{3}\right) \times 1733 \times \mathrm{T} / \mathrm{P}=467 \mathrm{C}$ at STP

Ozone in Air (High concentrations such as at the outputs of corona discharge generators)

(Concentrations by Weight)

$1 \mathrm{~g} \mathrm{O}_{3} / \mathrm{m}^{3}=782 \mathrm{ppm}$ by weight
$100 \mathrm{~g} \mathrm{O}_{3} / \mathrm{m}^{3}=7.82 \% \mathrm{O}_{3}$ in air
$1 \% \mathrm{O}_{3}$ (by weight) $=12.8 \mathrm{~g} / \mathrm{m}^{3}$ in air
Conc. by weight, $\mathrm{G}(\mathrm{or} \mathrm{w} / \mathrm{w})=\mathrm{C} \times .29 \times \mathrm{T} / \mathrm{P}=.0782 \mathrm{C}$ at STP, $\mathrm{C}=\mathrm{Conc}$. in $\mathrm{G} / \mathrm{M}^{3}$
Ozone in Oxygen (High concentrations by Weight)
(14) $\quad 1 \mathrm{~g} \mathrm{O}_{3} / \mathrm{m}^{3}$ (of O_{2}) $=699 \mathrm{ppm}$ by weight

$$
\begin{equation*}
100 \mathrm{~g} \mathrm{O}_{3} / \mathrm{m}^{3}\left(\text { of } \mathrm{O}_{2}\right)=6.99 \% \mathrm{O}_{3} \text { in } \mathrm{O}_{2} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
1 \% \mathrm{O}_{3} \text { (by weight) }=14.3 \mathrm{~g} / \mathrm{m}^{3} \text { in oxygen } \tag{16}
\end{equation*}
$$

Output of Small Ozone Generators

Ozone output $=($ a constant $) \times($ air flow thru the generator $) X$ (measured concentration)
For small generators this can be expressed as:
Output (g/hour) $=\mathrm{K} \times($ flow in cfm) $\times($ measured ppm (vol) $)$

$$
=\mathrm{cfm} \times .0283 \mathrm{~m}^{3} / \mathrm{ft}^{3} \times 60 \mathrm{~min} / \mathrm{hr} \times \mathrm{ppm}(\mathrm{vol}) / 467 \mathrm{ppm} / \mathrm{g} / \mathrm{m}^{3}
$$

$$
\begin{equation*}
\text { Output }(\mathrm{g} / \mathrm{hr})=.00364 \times \mathrm{cfm} \times \mathrm{ppm} \quad=.128 \times \mathrm{m} 3 / \mathrm{min} \times \mathrm{ppm} \tag{17}
\end{equation*}
$$

Typical Instrumentation Ranges by Application

Ambiental ozone: 0-1 ppm (volume)
Ozone for storage, etc. 0-20 ppm (volume)
High concentration ozone: $\quad 0-16 \%$ by weight $\quad 0-200 \mathrm{~g} / \mathrm{m}^{3}$ (note if O_{2} or air)
Ozone dissolved in water: $\quad 0-20 \mathrm{mg} / \mathrm{L} \quad 0-20 \mathrm{ppm}$ (by weight)

Important Qualitative Ozone Relationships

- Ozone half-life in air is typically about 15 minutes in open areas (can be hours in enclosed areas) and increases with lower temperature and lower humidity.
- Ozone is about 50\% heavier than air and has a low vapor pressure, so it tends to sink to the floor and does not disperse if there is no air circulation.
- Virtually all ozone instruments have cross-sensitivities with other gases. Chlorine compounds such as ClO_{2} and nitrogen compounds such as NO_{2} look very much like ozone to many instruments. Strong VOCs such as vapors of alcohols affect most VOC instruments.
- Maximum ozone concentration in water varies directly by concentration of the gas in air and inversely by temperature: for example 1.5% feed gas (by weight) will have a maximum concentration of about $11 \mathrm{ppm}(\mathrm{mg} / \mathrm{L})$ in water at 5 degrees C and 6.4 ppm at 20 degrees C. Doubling the concentrations of ozone in the feed gas will double the concentration in water.
- Dissolved ozone monitors also have cross-sensitivity and other operational problems. For example, the popular and low-cost ORP meters (oxidation-reduction potential meters) are sensitive to pH and various ionic conditions of the water.
- Ozone reactions in air are fairly well understood in terms of starting compounds and ending compounds, but the intermediate reactions and compounds are not always well understood.
- Ozone reactions in water are generally well-understood and documented, but areas of uncertainty still exist.

